Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(4-Fluorophenyl)-3-(4-methylphenyl)-1-phenyl-2-pyrazoline

Huan-Mei Guo

Department of Chemistry, Weifang University, Weifang 261061, People's Republic of China

Correspondence e-mail: huanmeiguo@163.com

Received 6 June 2007; accepted 12 June 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.133; data-to-parameter ratio = 13.5.

In the title compound, $C_{22}H_{19}FN_2$, the mean plane of the pyrazoline ring forms dihedral angles of $18.52 (10)^{\circ}$ with the phenyl ring, $71.69 (10)^{\circ}$ with the fluorophenyl ring and $4.82 (10)^{\circ}$ with the *p*-tolyl ring.

Related literature

For related literature, see: Guo et al. (2006); Manna et al. (2002); Wiley et al. (1958).

Experimental

Crystal data

$C_{22}H_{19}FN_2$	V = 1738.0 (6) Å ³
$M_r = 330.39$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.854 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 11.429 (2) Å	T = 298 (2) K
c = 10.833 (2) Å	$0.50 \times 0.45 \times 0.10 \text{ mm}$
$\beta = 109.090 \ (3)^{\circ}$	

Data collection

Refinement

Bruker SMART CCD area-detector diffractometer Absorption correction: none 7135 measured reflections

3066 independent reflections 2155 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$

227 parameters

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.133$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^-$ S = 1.01 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ 3066 reflections

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2325).

References

Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Guo, H.-M., Jian, F.-F., Zhou, L.-Y., Zhao, P.-S. & Zheng, J. (2006). Acta Cryst. E62. 04337-04338.

Manna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B. & Tafi, A. (2002). Biorg. Med. Chem. 12, 3629-3635.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Wiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732-738.

supplementary materials

Acta Cryst. (2007). E63, o3223 [doi:10.1107/81600536807028711]

5-(4-Fluorophenyl)-3-(4-methylphenyl)-1-phenyl-2-pyrazoline

H.-M. Guo

Comment

Pyrazolines are important and useful five-membered heterocyclic compounds. 1-Acetyl-3,5-diaryl-2-pyrazolines have been found to inhibit the monoamine oxidases (Manna *et al.*, 2002). 1,3,5-Triaryl-2-pyrazolines were also used as scintillation solutes (Wiley *et al.*, 1958). Here, we report the crystal structure of the title compound (I).

In the structure of (I) (Fig. 1), the values of the bond lengths and bond angles arel in the normal range (Guo *et al.*, 2006). The mean plane of pyrazolinyl ring forms a dihedral angle of $18.52 (10)^\circ$ with the phenyl ring, $71.69 (10)^\circ$ with the fluorophenyl ring and $4.82 (10)^\circ$ with the *p*-tolyl ring.

Experimental

1-(*p*-Methylphenyl)-3-(*p*-fluorophenyl)-2-propenyl-1-ketone (0.02 mol) and phenylhydrazine (0.02 mol) were mixed in 99.5% acetic acid (40 ml) and stirred in refluxing for 6 h, then the mixture was poured into ice-water to afford yellow solids. The solids were filtrated and washed with water until the pH of solution is about to 7.0. Finally, the solid crystals were dry under room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from EtOH at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å and with $U_{iso}(H)$ = $1.2U_{eq}$ or $1.5U_{eq}$ of the parent atoms.

Figures

Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.

5-(4-Fluorophenyl)-3-(4-methylphenyl)-1-phenyl-2-pyrazoline

Crystal data

C ₂₂ H ₁₉ FN ₂	$F_{000} = 696$
$M_r = 330.39$	$D_{\rm x} = 1.263 {\rm ~Mg~m}^{-3}$

Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 14.854 (3) Å
<i>b</i> = 11.429 (2) Å
c = 10.833 (2) Å
$\beta = 109.090 \ (3)^{\circ}$
V = 1738.0 (6) Å ³
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	2155 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.020$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.3^{\circ}$
ϕ and ω scans	$h = -17 \rightarrow 16$
Absorption correction: none	$k = -12 \rightarrow 13$
7135 measured reflections	$l = -11 \rightarrow 12$
3066 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.133$	$w = 1/[\sigma^2(F_o^2) + (0.0747P)^2 + 0.1146P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.003$
3066 reflections	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
227 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Mo *K* α radiation $\lambda = 0.71073$ Å

 $\theta = 2.3-24.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 298 (2) KBlock, yellow

 $0.50\times0.45\times0.10~mm$

Cell parameters from 2776 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.84586 (13)	1.01263 (17)	-0.0443 (2)	0.0773 (5)
H1	0.8430	0.9388	-0.0814	0.093*
C2	0.90293 (14)	1.09809 (18)	-0.07041 (19)	0.0812 (5)
H2	0.9379	1.0814	-0.1255	0.097*
C3	0.90851 (13)	1.20709 (18)	-0.0161 (2)	0.0848 (6)
H3	0.9460	1.2650	-0.0351	0.102*
C4	0.85805 (13)	1.22952 (17)	0.0669 (2)	0.0845 (6)
H4	0.8625	1.3029	0.1055	0.101*
C5	0.80102 (12)	1.14601 (16)	0.09424 (19)	0.0739 (5)
Н5	0.7677	1.1628	0.1514	0.089*
C6	0.79317 (12)	1.03656 (15)	0.03659 (17)	0.0650 (4)
C7	0.70449 (13)	0.84353 (15)	-0.01505 (18)	0.0730 (5)
H7	0.6890	0.8604	-0.1084	0.088*
C8	0.78013 (12)	0.75006 (14)	0.02456 (16)	0.0616 (4)
С9	0.77887 (13)	0.65943 (16)	-0.06012 (17)	0.0711 (5)
Н9	0.7329	0.6593	-0.1426	0.085*
C10	0.84354 (14)	0.56954 (17)	-0.0260 (2)	0.0791 (5)
H10	0.8420	0.5090	-0.0840	0.095*
C11	0.90948 (13)	0.57141 (17)	0.0943 (2)	0.0755 (5)
C12	0.91423 (13)	0.65768 (19)	0.18137 (19)	0.0817 (6)
H12	0.9604	0.6563	0.2636	0.098*
C13	0.84913 (14)	0.74803 (17)	0.14589 (17)	0.0756 (5)
H13	0.8519	0.8083	0.2047	0.091*
C14	0.61277 (13)	0.81138 (17)	0.0143 (2)	0.0825 (6)
H14A	0.5578	0.8123	-0.0647	0.099*
H14B	0.6180	0.7348	0.0545	0.099*
C15	0.60609 (11)	0.90527 (14)	0.10650 (16)	0.0612 (4)
C16	0.53417 (11)	0.91201 (14)	0.17113 (16)	0.0617 (4)
C17	0.46009 (12)	0.83265 (16)	0.14551 (19)	0.0753 (5)
H17	0.4552	0.7736	0.0846	0.090*
C18	0.39311 (12)	0.83949 (18)	0.2089 (2)	0.0812 (6)
H18	0.3444	0.7844	0.1900	0.097*
C19	0.39667 (12)	0.92547 (16)	0.29887 (19)	0.0737 (5)
C20	0.32370 (13)	0.9332 (2)	0.3669 (2)	0.0968 (7)
H20A	0.2669	0.8930	0.3163	0.145*
H20B	0.3091	1.0138	0.3764	0.145*
H20C	0.3484	0.8976	0.4516	0.145*
C21	0.47016 (14)	1.00439 (18)	0.3234 (2)	0.0862 (6)
H21	0.4746	1.0637	0.3838	0.103*
C22	0.53736 (13)	0.99869 (17)	0.2615 (2)	0.0810 (6)
H22	0.5859	1.0541	0.2808	0.097*
F1	0.97450 (8)	0.48320 (11)	0.13006 (15)	0.1102 (5)
N1	0.67233 (10)	0.98251 (12)	0.12690 (13)	0.0657 (4)
N2	0.73301 (11)	0.95237 (12)	0.06048 (16)	0.0777 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0876 (12)	0.0718 (11)	0.0851 (13)	0.0018 (9)	0.0454 (11)	0.0045 (10)
C2	0.0812 (12)	0.0913 (14)	0.0851 (13)	0.0026 (10)	0.0462 (10)	0.0124 (11)
C3	0.0767 (11)	0.0812 (13)	0.1082 (16)	-0.0091 (10)	0.0461 (11)	0.0126 (12)
C4	0.0788 (12)	0.0689 (11)	0.1175 (16)	-0.0094 (9)	0.0480 (12)	-0.0024 (11)
C5	0.0719 (10)	0.0672 (11)	0.0941 (13)	-0.0009 (9)	0.0430 (10)	0.0006 (10)
C6	0.0659 (9)	0.0604 (10)	0.0760 (11)	0.0025 (8)	0.0331 (9)	0.0074 (8)
C7	0.0870 (11)	0.0666 (11)	0.0736 (11)	-0.0032 (9)	0.0376 (9)	-0.0034 (9)
C8	0.0734 (10)	0.0604 (9)	0.0608 (10)	-0.0114 (8)	0.0354 (9)	-0.0045 (8)
C9	0.0782 (11)	0.0760 (11)	0.0635 (11)	-0.0098 (10)	0.0293 (9)	-0.0112 (9)
C10	0.0902 (13)	0.0680 (12)	0.0921 (14)	-0.0091 (10)	0.0476 (12)	-0.0156 (10)
C11	0.0734 (11)	0.0673 (11)	0.0992 (15)	-0.0039 (9)	0.0467 (11)	0.0090 (11)
C12	0.0800 (12)	0.0912 (14)	0.0733 (12)	-0.0115 (11)	0.0242 (10)	0.0079 (11)
C13	0.0938 (12)	0.0746 (12)	0.0628 (11)	-0.0103 (11)	0.0315 (10)	-0.0103 (9)
C14	0.0778 (11)	0.0760 (12)	0.0999 (14)	-0.0071 (9)	0.0377 (10)	-0.0111 (11)
C15	0.0616 (9)	0.0561 (9)	0.0644 (10)	0.0025 (8)	0.0187 (8)	0.0083 (8)
C16	0.0553 (9)	0.0582 (9)	0.0702 (11)	0.0039 (7)	0.0187 (8)	0.0115 (8)
C17	0.0630 (10)	0.0696 (11)	0.0913 (13)	-0.0031 (9)	0.0225 (9)	-0.0051 (10)
C18	0.0544 (9)	0.0796 (13)	0.1092 (15)	-0.0072 (9)	0.0261 (10)	0.0081 (12)
C19	0.0603 (10)	0.0727 (11)	0.0917 (13)	0.0054 (9)	0.0297 (9)	0.0128 (10)
C20	0.0713 (12)	0.1072 (16)	0.1243 (18)	-0.0014 (11)	0.0491 (12)	0.0124 (13)
C21	0.0844 (12)	0.0781 (12)	0.1126 (16)	-0.0115 (10)	0.0550 (12)	-0.0112 (11)
C22	0.0751 (11)	0.0708 (12)	0.1084 (15)	-0.0156 (9)	0.0454 (11)	-0.0075 (11)
F1	0.0939 (8)	0.0929 (8)	0.1555 (12)	0.0150 (7)	0.0567 (8)	0.0225 (8)
N1	0.0708 (9)	0.0589 (8)	0.0762 (9)	0.0022 (7)	0.0361 (7)	0.0072 (7)
N2	0.0917 (10)	0.0588 (8)	0.1033 (12)	-0.0085 (7)	0.0600 (9)	-0.0090 (8)
Geometric p	arameters (Å, °)					
C1—C6		1.380 (2)	C12–	C13	1.38	31 (3)
C1—C2		1.382 (3)	C12–	-H12	0.93	300
C1—H1		0.9300	C13–	-H13	0.92	300
C2—C3		1.369 (3)	C14-	C15	1.49	92 (3)
С2—Н2		0.9300	C14–	-H14A	0.9	700
C3—C4		1.369 (3)	C14-	-H14B	0.9	700
С3—Н3		0.9300	C15-	N1	1.28	862 (19)
C4—C5		1.371 (2)	C15-	C16	1.4:	58 (2)
C4—H4		0.9300	C16-	C17	1.38	32 (2)
C5—C6		1.386 (2)	C16-	C22	1.38	33 (3)
С5—Н5		0.9300	C17-		1 39	83 (3)

С3—Н3	0.9300	CI3—NI	1.2862 (19
C4—C5	1.371 (2)	C15—C16	1.458 (2)
С4—Н4	0.9300	C16—C17	1.382 (2)
C5—C6	1.386 (2)	C16—C22	1.383 (3)
С5—Н5	0.9300	C17—C18	1.383 (3)
C6—N2	1.394 (2)	C17—H17	0.9300
C7—N2	1.473 (2)	C18—C19	1.373 (3)
С7—С8	1.507 (2)	C18—H18	0.9300
C7—C14	1.541 (2)	C19—C21	1.373 (3)
С7—Н7	0.9800	C19—C20	1.500 (3)
C8—C13	1.377 (2)	C20—H20A	0.9600

C8—C9	1.380 (2)	C20—H20B	0.9600
C9—C10	1.372 (3)	C20—H20C	0.9600
С9—Н9	0.9300	C21—C22	1.373 (3)
C10-C11	1.350 (3)	C21—H21	0.9300
С10—Н10	0.9300	C22—H22	0.9300
C11—C12	1.350 (3)	N1—N2	1.3686 (19)
C11—F1	1.362 (2)		
C6—C1—C2	120.21 (18)	C8—C13—H13	119.6
C6—C1—H1	119.9	С12—С13—Н13	119.6
C2—C1—H1	119.9	C15—C14—C7	102.92 (14)
$C_3 - C_2 - C_1$	120.67 (18)	C15-C14-H14A	111.2
C3—C2—H2	119 7	C7—C14—H14A	111.2
C1 - C2 - H2	119.7	C_{15} C_{14} H_{14B}	111.2
$C^2 - C^3 - C^4$	118.92 (18)	C7—C14—H14B	111.2
$C_2 = C_3 = H_3$	120.5	H_{14A} $-C_{14}$ H_{14B}	109.1
$C_4 = C_3 = H_3$	120.5	N1_C15_C16	121 38 (15)
$C_{4} = C_{5} = C_{5}$	120.5	N1 - C15 - C14	121.30(15) 113.20(15)
$C_3 = C_4 = C_3$	110.3	$C_{16} = C_{15} = C_{14}$	115.20(15) 125.41(15)
$C_5 = C_4 = H_4$	119.5	$C_{10} = C_{15} = C_{14}$	125.41 (15)
C_{3}	119.5	$C_{17} = C_{10} = C_{22}$	110.93(10)
$C_4 = C_5 = C_6$	119.85 (17)	C1/-C10-C15	121.94 (10)
C4—C5—H5	120.1	$C_{22} - C_{10} - C_{13}$	121.14(13)
	120.1	C10 - C17 - C18	121.18 (18)
CI = C6 = C5	118.91 (16)	C16C17H17	119.4
CI = C6 = N2	120.82 (16)	C18—C17—H17	119.4
C5—C6—N2	120.27 (16)	C19—C18—C17	121.72 (17)
N2—C/—C8	112.84 (15)	С19—С18—Н18	119.1
N2—C7—C14	101.54 (14)	C17—C18—H18	119.1
C8—C7—C14	113.54 (15)	C18—C19—C21	116.80 (17)
N2—C7—H7	109.6	C18—C19—C20	121.65 (17)
С8—С7—Н7	109.6	C21—C19—C20	121.55 (19)
С14—С7—Н7	109.6	C19—C20—H20A	109.5
C13—C8—C9	117.76 (17)	C19—C20—H20B	109.5
C13—C8—C7	122.44 (16)	H20A-C20-H20B	109.5
C9—C8—C7	119.74 (16)	C19—C20—H20C	109.5
C10—C9—C8	121.78 (17)	H20A-C20-H20C	109.5
С10—С9—Н9	119.1	H20B-C20-H20C	109.5
С8—С9—Н9	119.1	C22—C21—C19	122.22 (19)
C11—C10—C9	118.13 (18)	C22—C21—H21	118.9
C11—C10—H10	120.9	C19—C21—H21	118.9
С9—С10—Н10	120.9	C21—C22—C16	121.15 (17)
C12-C11-C10	122.76 (19)	C21—C22—H22	119.4
C12—C11—F1	118.17 (19)	C16—C22—H22	119.4
C10-C11-F1	119.07 (19)	C15—N1—N2	109.60 (14)
C11—C12—C13	118.69 (18)	N1—N2—C6	119.76 (14)
C11—C12—H12	120.7	N1—N2—C7	112.66 (13)
C13—C12—H12	120.7	C6—N2—C7	124.43 (15)
C8—C13—C12	120.87 (18)		
C6—C1—C2—C3	0.4 (3)	N1-C15-C16-C17	176.97 (15)

supplementary materials

C1—C2—C3—C4	1.3 (3)	C14—C15—C16—C17	-4.0 (3)
C2—C3—C4—C5	-1.3 (3)	N1-C15-C16-C22	-3.2 (2)
C3—C4—C5—C6	-0.5 (3)	C14—C15—C16—C22	175.91 (17)
C2—C1—C6—C5	-2.1 (3)	C22-C16-C17-C18	-0.7 (3)
C2-C1-C6-N2	177.96 (18)	C15—C16—C17—C18	179.21 (15)
C4—C5—C6—C1	2.2 (3)	C16—C17—C18—C19	0.5 (3)
C4—C5—C6—N2	-177.92 (17)	C17—C18—C19—C21	-0.2 (3)
N2-C7-C8-C13	23.6 (2)	C17—C18—C19—C20	179.66 (17)
C14—C7—C8—C13	-91.3 (2)	C18—C19—C21—C22	0.0 (3)
N2—C7—C8—C9	-159.53 (15)	C20-C19-C21-C22	-179.81 (19)
C14—C7—C8—C9	85.6 (2)	C19—C21—C22—C16	-0.2 (3)
C13—C8—C9—C10	0.1 (3)	C17—C16—C22—C21	0.5 (3)
C7—C8—C9—C10	-176.90 (16)	C15—C16—C22—C21	-179.36 (17)
C8—C9—C10—C11	0.1 (3)	C16—C15—N1—N2	176.66 (14)
C9—C10—C11—C12	-0.1 (3)	C14—C15—N1—N2	-2.50 (19)
C9—C10—C11—F1	-179.81 (15)	C15—N1—N2—C6	161.69 (15)
C10-C11-C12-C13	-0.2 (3)	C15—N1—N2—C7	0.88 (19)
F1-C11-C12-C13	179.52 (16)	C1-C6-N2-N1	-171.52 (16)
C9—C8—C13—C12	-0.4 (3)	C5-C6-N2-N1	8.6 (3)
C7—C8—C13—C12	176.52 (16)	C1—C6—N2—C7	-13.1 (3)
C11—C12—C13—C8	0.5 (3)	C5-C6-N2-C7	167.00 (16)
N2-C7-C14-C15	-2.16 (18)	C8—C7—N2—N1	-120.91 (15)
C8—C7—C14—C15	119.24 (16)	C14—C7—N2—N1	0.97 (19)
C7—C14—C15—N1	3.0 (2)	C8—C7—N2—C6	79.3 (2)
C7—C14—C15—C16	-176.13 (14)	C14—C7—N2—C6	-158.79 (16)

Fig. 1